
Mohawk Documentation
Release 0.1

Kumar McMillan, Austin King

Oct 28, 2019

Contents

1 Installation 3

2 Bugs 5

3 Topics 7
3.1 Using Mohawk . 7
3.2 Security Considerations . 13
3.3 API . 14
3.4 Developers . 18
3.5 Why Mohawk? . 19

4 Framework integration 21

5 TODO 23
5.1 Changelog . 23

6 Indices and tables 27

Python Module Index 29

Index 31

i

ii

Mohawk Documentation, Release 0.1

Mohawk is an alternate Python implementation of the Hawk HTTP authorization scheme.

Hawk lets two parties securely communicate with each other using messages signed by a shared key. It is based on
HTTP MAC access authentication (which was based on parts of OAuth 1.0).

The Mohawk API is a little different from that of the Node library (i.e. the living Hawk spec). It was redesigned to be
more intuitive to developers, less prone to security problems, and more Pythonic.

Contents 1

https://github.com/hueniverse/hawk
https://pypi.python.org/pypi/mohawk
https://pypi.python.org/pypi/mohawk
https://travis-ci.org/kumar303/mohawk
https://mohawk.readthedocs.io/en/latest/?badge=latest
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05
http://tools.ietf.org/html/rfc5849
https://github.com/hueniverse/hawk

Mohawk Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

Requirements:

• Python 2.7+ or 3.4+

• six

Using pip:

pip install mohawk

If you want to install from source, visit https://github.com/kumar303/mohawk

3

https://pypi.python.org/pypi/six
https://pip.readthedocs.io/
https://github.com/kumar303/mohawk

Mohawk Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Bugs

You can submit bugs / patches on Github: https://github.com/kumar303/mohawk

Important: If you think you found a security vulnerability please try emailing kumar.mcmillan@gmail.com before
submitting a public issue.

5

https://github.com/kumar303/mohawk
mailto:kumar.mcmillan@gmail.com

Mohawk Documentation, Release 0.1

6 Chapter 2. Bugs

CHAPTER 3

Topics

3.1 Using Mohawk

There are two parties involved in Hawk communication: a sender and a receiver. They use a shared secret to
sign and verify each other’s messages.

Sender A client who wants to access a Hawk-protected resource. The client will sign their request and upon receiving
a response will also verify the response signature.

Receiver A server that uses Hawk to protect its resources. The server will check the signature of an incoming request
before accepting it. It also signs its response using the same shared secret.

What are some good use cases for Hawk? This library was built for the case of securing API connections between two
back-end servers. Hawk is a good fit for this because you can keep the shared secret safe on each machine. Hawk may
not be a good fit for scenarios where you can’t protect the shared secret.

After getting familiar with usage, you may want to consult the Security Considerations section.

3.1.1 Sending a request

Let’s say you want to make an HTTP request like this:

>>> url = 'https://some-service.net/system'
>>> method = 'POST'
>>> content = 'one=1&two=2'
>>> content_type = 'application/x-www-form-urlencoded'

Set up your Hawk request by creating a mohawk.Sender object with all the elements of the request that you need
to sign:

>>> from mohawk import Sender
>>> sender = Sender({'id': 'some-sender',
... 'key': 'a long, complicated secret',
... 'algorithm': 'sha256'},

(continues on next page)

7

https://github.com/hueniverse/hawk

Mohawk Documentation, Release 0.1

(continued from previous page)

... url,

... method,

... content=content,

... content_type=content_type)

This provides you with a Hawk Authorization header to send along with your request:

>>> sender.request_header
'Hawk mac="...", hash="...", id="some-sender", ts="...", nonce="..."'

Using the requests library just as an example, you would send your POST like this:

>>> requests.post(url, data=content,
... headers={'Authorization': sender.request_header,
... 'Content-Type': content_type})

Notice how both the content and content-type values were signed by the Sender. In the case of a GET request you’ll
probably need to sign empty strings like Sender(..., 'GET', content='', content_type=''), that
is, if your request library doesn’t automatically set a content-type for GET requests.

If you only intend to work with mohawk.Sender, skip down to Verifying a response.

3.1.2 Receiving a request

On the receiving end, such as a web server, you’ll need to set up a mohawk.Receiver object to accept and respond
to mohawk.Sender requests.

First, you need to give the receiver a callable that it can use to look up sender credentials:

>>> def lookup_credentials(sender_id):
... if sender_id in allowed_senders:
... # Return a credentials dictionary formatted like the sender example.
... return allowed_senders[sender_id]
... else:
... raise LookupError('unknown sender')

An incoming request will probably arrive in an object like this, depending on your web server framework:

>>> request = {'headers': {'Authorization': sender.request_header,
... 'Content-Type': content_type},
... 'url': url,
... 'method': method,
... 'content': content}

Create a mohawk.Receiver using values from the incoming request:

>>> from mohawk import Receiver
>>> receiver = Receiver(lookup_credentials,
... request['headers']['Authorization'],
... request['url'],
... request['method'],
... content=request['content'],
... content_type=request['headers']['Content-Type'])

If this constructor does not raise any Exceptions then the signature of the request is correct and you can proceed.

8 Chapter 3. Topics

http://docs.python-requests.org/

Mohawk Documentation, Release 0.1

Important: The server running mohawk.Receiver code should synchronize its clock with something like TLS-
date to make sure it compares timestamps correctly.

3.1.3 Responding to a request

It’s optional per the Hawk spec but a mohawk.Receiver should sign its response back to the client to prevent
certain attacks.

The receiver starts by building a message it wants to respond with:

>>> response_content = '{"msg": "Hello, dear friend"}'
>>> response_content_type = 'application/json'
>>> header = receiver.respond(content=response_content,
... content_type=response_content_type)

This provides you with a similar Hawk header to use in the response:

>>> receiver.response_header
'Hawk mac="...", hash="...="'

Using your web server’s framework, respond with a Server-Authorization header. For example:

>>> response = {
... 'headers': {'Server-Authorization': receiver.response_header,
... 'Content-Type': response_content_type},
... 'content': response_content
... }

3.1.4 Verifying a response

When the mohawk.Sender receives a response it should verify the signature to make sure nothing has been tampered
with:

>>> sender.accept_response(response['headers']['Server-Authorization'],
... content=response['content'],
... content_type=response['headers']['Content-Type'])

If this method does not raise any Exceptions then the signature of the response is correct and you can proceed.

3.1.5 Allowing senders to adjust their timestamps

The easiest way to avoid timestamp problems is to synchronize your server clock using something like TLSdate.

If a sender’s clock is out of sync with the receiver, its message might expire prematurely. In this case the receiver
should respond with a header the sender can use to adjust its timestamp.

When receiving a request you might get a mohawk.exc.TokenExpired exception. You can access the
www_authenticate property on the exception object to respond correctly like this:

>>> from mohawk.exc import TokenExpired
>>> try:
... receiver = Receiver(lookup_credentials,

(continues on next page)

3.1. Using Mohawk 9

http://linux-audit.com/tlsdate-the-secure-alternative-for-ntpd-ntpdate-and-rdate/
http://linux-audit.com/tlsdate-the-secure-alternative-for-ntpd-ntpdate-and-rdate/
https://github.com/hueniverse/hawk
http://linux-audit.com/tlsdate-the-secure-alternative-for-ntpd-ntpdate-and-rdate/

Mohawk Documentation, Release 0.1

(continued from previous page)

... request['headers']['Authorization'],

... request['url'],

... request['method'],

... content=request['content'],

... content_type=request['headers']['Content-Type'])

... except TokenExpired as expiry:

... response['headers']['WWW-Authenticate'] = expiry.www_authenticate

... print(expiry.www_authenticate)
Hawk ts="...", tsm="...", error="token with UTC timestamp...has expired..."

A compliant client can look for this response header and parse the ts property (the server’s “now” timestamp) and
the tsm property (a MAC calculation of ts). It can then recalculate the MAC using its own credentials and if the
MACs both match it can trust that this is the real server’s timestamp. This allows the sender to retry the request with
an adjusted timestamp.

3.1.6 Using a nonce to prevent replay attacks

A replay attack is when someone copies a Hawk authorized message and re-sends the message without altering
it. Because the Hawk signature would still be valid, the receiver may accept the message. This could have unin-
tended side effects such as increasing the quantity of an item just purchased if it were a commerce API that had an
increment-item service.

Hawk protects against replay attacks in a couple ways. First, a receiver checks the timestamp of the message which
may result in a mohawk.exc.TokenExpired exception. Second, every message includes a cryptographic nonce
which is a unique identifier. In combination with the sender’s id and the request’s timestamp, a receiver can use the
nonce to know if it has already received the request. If so, the mohawk.exc.AlreadyProcessed exception is
raised.

By default, Mohawk doesn’t know how to check nonce values; this is something your application needs to do.

Important: If you don’t configure nonce checking, your application could be susceptible to replay attacks.

Make a callable that returns True if a sender’s nonce plus its timestamp has been seen already. Here is an example
using something like memcache:

>>> def seen_nonce(sender_id, nonce, timestamp):
... key = '{id}:{nonce}:{ts}'.format(id=sender_id, nonce=nonce,
... ts=timestamp)
... if memcache.get(key):
... # We have already processed this nonce + timestamp.
... return True
... else:
... # Save this nonce + timestamp for later.
... memcache.set(key, True)
... return False

Because messages will expire after a short time you don’t need to store nonces for much longer than that timeout. See
mohawk.Receiver for the default timeout.

Pass your callable as a seen_nonce argument to mohawk.Receiver:

>>> receiver = Receiver(lookup_credentials,
... request['headers']['Authorization'],
... request['url'],

(continues on next page)

10 Chapter 3. Topics

http://en.wikipedia.org/wiki/Cryptographic_nonce

Mohawk Documentation, Release 0.1

(continued from previous page)

... request['method'],

... content=request['content'],

... content_type=request['headers']['Content-Type'],

... seen_nonce=seen_nonce)

If seen_nonce() returns True, mohawk.exc.AlreadyProcessed will be raised.

When a sender calls mohawk.Sender.accept_response(), it will receive a Hawk message but the nonce
will be that of the original request. In other words, the nonce received is the same nonce that the sender generated
and signed when initiating the request. This generally means you don’t have to worry about response replay attacks.
However, if you expose your mohawk.Sender.accept_response() call somewhere publicly over HTTP then
you may need to protect against response replay attacks. You can do so by constructing a mohawk.Sender with the
same seen_nonce keyword:

>>> sender = Sender({'id': 'some-sender',
... 'key': 'a long, complicated secret',
... 'algorithm': 'sha256'},
... url,
... method,
... content=content,
... content_type=content_type,
... seen_nonce=seen_nonce)

3.1.7 Skipping content checks

In some cases you may not be able to hash request/response content. For example, the content could be too large. If
you run into this, Hawk might not be the best fit for you but Hawk does allow you to accept content without a declared
hash if you wish.

Important: By allowing content without a declared hash, both the sender and receiver are susceptible to content
tampering.

You can send a request without signing the content by passing this keyword argument to a mohawk.Sender:

>>> sender = Sender(credentials, url, method, always_hash_content=False)

This says to skip hashing of the content and content_type values if they are both mohawk.base.
EmptyValue.

Now you’ll get an Authorization header without a hash attribute:

>>> sender.request_header
'Hawk mac="...", id="some-sender", ts="...", nonce="..."'

The mohawk.Receiver must also be constructed to accept content without a declared hash using
accept_untrusted_content=True:

>>> receiver = Receiver(lookup_credentials,
... sender.request_header,
... request['url'],
... request['method'],
... content=request['content'],
... content_type=request['headers']['Content-Type'],
... accept_untrusted_content=True)

3.1. Using Mohawk 11

Mohawk Documentation, Release 0.1

This will skip checking the hash of content and content_type only if the Authorization header omits the
hash attribute. If the hash attribute is present, it will be checked as normal.

3.1.8 Empty requests

For requests whose content (and by extension content_type) is None or an empty string, it is acceptable
for the sender to omit the declared hash, regardless of the accept_untrusted_content value provided to the
mohawk.Receiver. For example, a GET request typically has empty content and some libraries may or may not
hash the content.

If the hash attribute is present, a None value for either content or content_type will be coerced to an empty
string prior to hashing.

3.1.9 Generating protected URLs

Hawk lets you protect a URL with a token derived from a secret key. After a period of time, access to the URL will
expire. As an example, you could use this to deliver a URL for purchased media, such a zip file of MP3s. The user
could access the URL for a short period of time but after that, the same URL would not be accessible.

In the Hawk spec, this is referred to as Single URI Authorization, or bewit.

Here’s an example of protecting access to this URL with Mohawk:

>>> url = 'https://site.org/purchases/music-album.zip'

Let’s say you want to allow access for 5 minutes:

>>> from mohawk.util import utc_now
>>> url_expires_at = utc_now() + (60 * 5)

Set up Hawk credentials like in previous examples:

>>> credentials = {
... 'id': 'some-recipient',
... 'key': 'a long, complicated secret',
... 'algorithm': 'sha256'
... }

Define the resource that you want to protect:

>>> from mohawk.base import Resource
>>> resource = Resource(
... credentials=credentials,
... url=url,
... method='GET',
... nonce='',
... timestamp=url_expires_at,
...)

Generate a bewit token:

>>> from mohawk.bewit import get_bewit
>>> bewit = get_bewit(resource)

Add that token as a bewit query string parameter back to the same URL:

12 Chapter 3. Topics

https://github.com/hueniverse/hawk/#single-uri-authorization

Mohawk Documentation, Release 0.1

>>> protected_url = '{url}?bewit={bewit}'.format(url=url, bewit=bewit)
>>> protected_url
'https://site.org/purchases/music-album.zip?bewit=...'

Now you can deliver this bewit protected URL to the recipient.

3.1.10 Serving protected URLs

When handling a request for a bewit protected URL on the server, you can begin by checking the bewit to make sure
it’s valid. If True, the server can respond with access to the resource. The check_bewit function returns True or
False and will also raise an exception for invalid bewit values.

>>> allowed_recipients = {}
>>> allowed_recipients['some-recipient'] = credentials
>>> def lookup_credentials(recipient_id):
... if recipient_id in allowed_recipients:
... # Return a credentials dictionary
... return allowed_recipients[recipient_id]
... else:
... raise LookupError('unknown recipient_id')
>>> from mohawk.bewit import check_bewit
>>> check_bewit(protected_url, credential_lookup=lookup_credentials)
True

Note: Well, that was complicated! At a future time, get_bewit and check_bewit will be complimented with a
higher level function that is easier to work with. See https://github.com/kumar303/mohawk/issues/17

3.1.11 Logging

All internal logging channels stem from mohawk. For example, the mohawk.receiver channel will just contain
receiver messages. These channels correspond to the submodules within mohawk.

To debug mohawk.exc.MacMismatch Exceptions and other authorization errors, set the mohawk channel to
DEBUG.

3.1.12 Going further

Well, hey, that about summarizes the concepts and basic usage of Mohawk. Check out the API for details. Also make
sure you are familiar with Security Considerations.

3.2 Security Considerations

Hawk HTTP authorization uses a message authentication code (MAC) algorithm to provide partial cryptographic
verification of HTTP requests/responses.

Important: Take a look at Hawk’s own security considerations.

Here are some additional security considerations:

3.2. Security Considerations 13

https://github.com/kumar303/mohawk/issues/17
http://docs.python.org/2/library/logging.html
https://github.com/hueniverse/hawk
https://github.com/hueniverse/hawk#security-considerations

Mohawk Documentation, Release 0.1

• mohawk is intended to be used as a low-level library. You should never expose its Exceptions publicly, say, in
an HTTP response, as they may provide hints to an attacker.

• Using a shared secret for signatures means that if the secret leaks out then messages can be signed all day long.
Make sure secrets are stored somewhere safe and never transmitted over an insecure channel. For example,
putting a shared secret in memory on a web browser page may or may not be secure enough.

• What does partial verification mean? While all major request/response artifacts are signed (URL, protocol,
method, content), only the content-type header is signed. You’ll want to make sure your sender and receiver
aren’t susceptible to header poisoning in case an attacker finds a way to replay a valid Hawk request with
additional headers. For example, if an attacker can find a way to replay a request and add the header x-token:
hijacked-token then the request might still be valid because this random header is not part of the signature.

• Consider Using a nonce to prevent replay attacks.

• Hawk lets you verify that you’re talking to the person you think you are. In a lot of ways, this is more trustworthy
than SSL/TLS but to guard against your own stupidity as well as prevent general eavesdropping, you should
probably use both HTTPS and Hawk.

• The Hawk spec says that signing request/response content is optional but just for extra paranoia, Mohawk raises
an exception if you skip content checks unintentionally. Read Skipping content checks for how to intentionally
make it optional. This does not apply to empty requests.

3.3 API

This is a detailed look at the Mohawk API. For general usage patterns see Using Mohawk.

3.3.1 Sender

class mohawk.Sender(credentials, url, method, content=EmptyValue, content_type=EmptyValue, al-
ways_hash_content=True, nonce=None, ext=None, app=None, dlg=None,
seen_nonce=None, _timestamp=None)

A Hawk authority that will emit requests and verify responses.

Parameters

• credentials (dict) – Dict of credentials with keys id, key, and algorithm. See
Using Mohawk for an example.

• url (str) – Absolute URL of the request.

• method (str) – Method of the request. E.G. POST, GET

• content=EmptyValue (str or file-like object) – Byte string of request
body or a file-like object.

• content_type=EmptyValue (str) – content-type header value for request.

• always_hash_content=True (bool) – When True, content and
content_type must be provided. Read Skipping content checks to learn more.

• nonce=None (str) – A string that when coupled with the timestamp will uniquely iden-
tify this request to prevent replays. If None, a nonce will be generated for you.

• ext=None (str) – An external Hawk string. If not None, this value will be signed so that
the receiver can trust it.

• app=None (str) – A Hawk application string. If not None, this value will be signed so
that the receiver can trust it.

14 Chapter 3. Topics

http://benlog.com/2010/09/07/defending-against-your-own-stupidity/
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk

Mohawk Documentation, Release 0.1

• dlg=None (str) – A Hawk delegation string. If not None, this value will be signed so
that the receiver can trust it.

• seen_nonce=None (callable) – A callable that returns True if a nonce has been seen.
See Using a nonce to prevent replay attacks for details.

accept_response(response_header, content=EmptyValue, content_type=EmptyValue, ac-
cept_untrusted_content=False, localtime_offset_in_seconds=0, times-
tamp_skew_in_seconds=60, **auth_kw)

Accept a response to this request.

Parameters

• response_header (str) – A Hawk Server-Authorization header such as one
created by mohawk.Receiver.

• content=EmptyValue (str) – Byte string of the response body received.

• content_type=EmptyValue (str) – Content-Type header value of the response
received.

• accept_untrusted_content=False (bool) – When True, allow responses that
do not hash their content. Read Skipping content checks to learn more.

• localtime_offset_in_seconds=0 (float) – Seconds to add to local time in
case it’s out of sync.

• timestamp_skew_in_seconds=60 (float) – Max seconds until a message ex-
pires. Upon expiry, mohawk.exc.TokenExpired is raised.

request_header = None
Value suitable for an Authorization header.

3.3.2 Receiver

class mohawk.Receiver(credentials_map, request_header, url, method, content=EmptyValue, con-
tent_type=EmptyValue, seen_nonce=None, localtime_offset_in_seconds=0,
accept_untrusted_content=False, timestamp_skew_in_seconds=60,
**auth_kw)

A Hawk authority that will receive and respond to requests.

Parameters

• credentials_map (callable) – Callable to look up the credentials dict by sender
ID. The credentials dict must have the keys: id, key, and algorithm. See Receiving a
request for an example.

• request_header (str) – A Hawk Authorization header such as one created by
mohawk.Sender.

• url (str) – Absolute URL of the request.

• method (str) – Method of the request. E.G. POST, GET

• content=EmptyValue (str) – Byte string of request body.

• content_type=EmptyValue (str) – content-type header value for request.

• accept_untrusted_content=False (bool) – When True, allow requests that do
not hash their content. Read Skipping content checks to learn more.

• localtime_offset_in_seconds=0 (float) – Seconds to add to local time in case
it’s out of sync.

3.3. API 15

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Mohawk Documentation, Release 0.1

• timestamp_skew_in_seconds=60 (float) – Max seconds until a message expires.
Upon expiry, mohawk.exc.TokenExpired is raised.

respond(content=EmptyValue, content_type=EmptyValue, always_hash_content=True, ext=None)
Respond to the request.

This generates the mohawk.Receiver.response_header attribute.

Parameters

• content=EmptyValue (str) – Byte string of response body that will be sent.

• content_type=EmptyValue (str) – content-type header value for response.

• always_hash_content=True (bool) – When True, content and
content_type must be provided. Read Skipping content checks to learn more.

• ext=None (str) – An external Hawk string. If not None, this value will be signed so
that the sender can trust it.

response_header = None
Value suitable for a Server-Authorization header.

3.3.3 Exceptions

If you want to catch any exception that might be raised, catch mohawk.exc.HawkFail.

Important: Never expose an exception message publicly, say, in an HTTP response, as it may provide hints to an
attacker.

exception mohawk.exc.AlreadyProcessed
The message has already been processed and cannot be re-processed.

See Using a nonce to prevent replay attacks for details.

exception mohawk.exc.BadHeaderValue
There was an error with an attribute or value when parsing or creating a Hawk header.

exception mohawk.exc.CredentialsLookupError
A mohawk.Receiver could not look up the credentials for an incoming request.

exception mohawk.exc.HawkFail
All Mohawk exceptions derive from this base.

exception mohawk.exc.InvalidBewit
The bewit is invalid; e.g. it doesn’t contain the right number of parameters.

exception mohawk.exc.InvalidCredentials
The specified Hawk credentials are invalid.

For example, the dict could be formatted incorrectly.

exception mohawk.exc.MacMismatch
The locally calculated MAC did not match the MAC that was sent.

exception mohawk.exc.MisComputedContentHash
The signature of the content did not match the actual content.

exception mohawk.exc.MissingAuthorization
No authorization header was sent by the client.

16 Chapter 3. Topics

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk

Mohawk Documentation, Release 0.1

exception mohawk.exc.MissingContent
A payload’s content or content_type were not provided.

See Skipping content checks for details.

exception mohawk.exc.TokenExpired(*args, **kw)
The timestamp on a message received has expired.

You may also receive this message if your server clock is out of sync. Consider synchronizing it with something
like TLSdate.

If you are unable to synchronize your clock universally, The Hawk spec mentions how you can adjust your
sender’s time to match that of the receiver in the case of unexpected expiration.

The www_authenticate attribute of this exception is a header that can be returned to the client. If the value
is not None, it will include a timestamp HMAC’d with the sender’s credentials. This will allow the client to
verify the value and safely apply an offset.

localtime_in_seconds = None
Current local time in seconds that was used to compare timestamps.

3.3.4 Base

class mohawk.base.Resource(**kw)
Normalized request / response resource.

Parameters

• credentials – A dict of credentials; it must have the keys: id, key, and algorithm.
See Sending a request for an example.

• url (str) – Absolute URL of the request / response.

• method (str) – Method of the request / response. E.G. POST, GET

• content=EmptyValue (str) – Byte string of request / response body.

• content_type=EmptyValue (str) – content-type header value for request / response.

• always_hash_content=True (bool) – When True, content and
content_type must be provided. Read Skipping content checks to learn more.

• ext=None (str) – An external Hawk string. If not None, this value will be signed so that
the sender can trust it.

• app=None (str) – A Hawk string identifying an external application.

• dlg=None (str) – A Hawk string identifying a “delegated by” value.

• timestamp=utc_now() – A unix timestamp integer, in UTC

• nonce=None (str) – A string that when coupled with the timestamp will uniquely iden-
tify this request / response.

• seen_nonce=None (callable) – A callable that returns True if a nonce has been seen.
See Using a nonce to prevent replay attacks for details.

mohawk.base.EmptyValue = EmptyValue
This represents an empty value but not None.

This is typically used as a placeholder of a default value so that internal code can differentiate it from None.

3.3. API 17

http://linux-audit.com/tlsdate-the-secure-alternative-for-ntpd-ntpdate-and-rdate/
https://github.com/hueniverse/hawk
https://github.com/hueniverse/hawk#future-time-manipulation
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/hueniverse/hawk
https://docs.python.org/3/library/stdtypes.html#str

Mohawk Documentation, Release 0.1

3.4 Developers

Grab the source from Github: https://github.com/kumar303/mohawk

3.4.1 Run the tests

You can run the full test suite with the tox command:

tox

To just run Python 2.7 unit tests type:

tox -e py27

To just run doctests type:

tox -e docs

3.4.2 Set up an environment

Using a virtualenv you can set yourself up for development like this:

virtualenv _virtualenv
source _virtualenv/bin/activate
pip install -r requirements/dev.txt
python setup.py develop

Note: Development commands such as building docs and publishing a release were last tested on Python 3.7.4 so
you will probably need a version close to that. Use tox to develop features for older Python versions.

3.4.3 Build the docs

In your virtualenv, you can build the docs like this:

make -C docs/ html doctest
open docs/_build/html/index.html

3.4.4 Publish a release

Do this first to prepare for a release:

• make sure the changelog is up to date

• make sure you bumped the module version in setup.py

• commit, tag (like git tag 0.3.1), and push upstream (like git push --tags upstream).

Run this from the repository root to publish a new release to PyPI as both a source distribution and wheel:

18 Chapter 3. Topics

https://github.com/kumar303/mohawk
https://tox.readthedocs.io/
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi

Mohawk Documentation, Release 0.1

rm -rf dist/*
python setup.py sdist bdist_wheel
twine upload dist/*

3.5 Why Mohawk?

• I started using PyHawk because it was written by Austin King and he’s awesome.

• PyHawk is a direct port from Node but this did not seem to fit right with Python, especially in how Node’s style
is to attempt internal error recovery and Python’s style is to raise exceptions that calling code can recover from.

• I was paranoid about how PyHawk (and maybe the Node lib too) makes it easy to ignore content hashing. If
programmers accidentally disregard hash checks then that would be bad.

• I started patching PyHawk but became confused about the lifecycle of the request/response.

• PyHawk didn’t have a lot of tests for edge cases (like content tampering) so it was hard to patch.

• I started on some Django middleware using PyHawk and found myself creating a lot of adapters for undocu-
mented internal dictionary structures which felt wrong.

• The PyHawk/Node API relies on pre-generated header artifacts but this feels clunky to me. I wanted that to be
an implementation detail.

• The required order in which you need to pre-generate artifacts is not implicitly enforced by the PyHawk/Node
API which can lead to mistakes if programmers re-use objects across requests.

• I re-wrote the class/function interface into something that I thought made sense then I re-wrote it three more
times until it started to actually make sense.

• I developed test first with a comprehensive suite focusing on the threat model that Hawk is designed to protect
you from. This helped me arrive at an API that should help developers write secure applications by default.

• I re-used a lot of PyHawk code :)

3.5. Why Mohawk? 19

https://github.com/mozilla/PyHawk
https://github.com/mozilla/PyHawk
https://github.com/mozilla/PyHawk
https://github.com/mozilla/PyHawk
https://github.com/mozilla/PyHawk

Mohawk Documentation, Release 0.1

20 Chapter 3. Topics

CHAPTER 4

Framework integration

Mohawk is a low level library that focuses on Hawk communication. The following higher-level libraries integrate
Mohawk into specific web frameworks:

• Hawkrest: adds Hawk to Django Rest Framework

• Did we miss one? Send a pull request so we can link to it.

21

https://hawkrest.readthedocs.io/
http://django-rest-framework.org/
https://github.com/kumar303/mohawk

Mohawk Documentation, Release 0.1

22 Chapter 4. Framework integration

CHAPTER 5

TODO

• Support NTP-like (but secure) synchronization for local server time. See TLSdate.

• Support auto-retrying a mohawk.Sender request with an offset if there is timestamp skew.

5.1 Changelog

• UNRELEASED

– Dropped support for Python 2.6.

– (Unreleased features should be listed here.)

• 1.1.0 (2019-10-28)

– Support passing file-like objects (those implementing .read(n)) as the content parameter for Re-
sources. See mohawk.Sender for details.

• 1.0.0 (2019-01-09)

– Security related: Bewit MACs were not compared in constant time and were thus possibly circumventable
by an attacker.

– Breaking change: Escape characters in header values (such as a back slash) are no longer allowed, poten-
tially breaking clients that depended on this behavior. See https://github.com/kumar303/mohawk/issues/34

– A sender is allowed to omit the content hash as long as their request has no content. The
mohawk.Receiver will skip the content hash check in this situation, regardless of the value of
accept_untrusted_content. See Empty requests for more details.

– Introduced max limit of 4096 characters in the Authorization header

– Changed default values of content and content_type arguments to mohawk.base.
EmptyValue in order to differentiate between misconfiguration and cases where these arguments are
explicitly given as None (as with some web frameworks). See Skipping content checks for more details.

23

http://linux-audit.com/tlsdate-the-secure-alternative-for-ntpd-ntpdate-and-rdate/
https://github.com/kumar303/mohawk/issues/34

Mohawk Documentation, Release 0.1

– Failing to pass content and content_type arguments to mohawk.Receiver or mohawk.
Sender.accept_response() without specifying accept_untrusted_content=True will
now raise mohawk.exc.MissingContent instead of ValueError.

• 0.3.4 (2017-01-07)

– Fixed AttributeError exception (it now raises mohawk.exc.MissingAuthorization) for
cases when the client sends a None type authorization header. See issue 23.

– Fixed Python 3.6 compatibility problem (a regex pattern was using the deprecated LOCALE flag). See
issue 32.

• 0.3.3 (2016-07-12)

– Fixed some cases where mohawk.exc.MacMismatch was raised instead of mohawk.exc.
MisComputedContentHash. This follows the Hawk HTTP authorization scheme implementation
more closely. See issue 15.

– Published as a Python wheel

• 0.3.2.1 (2016-02-25)

– Re-did the 0.3.2 release; the tag was missing some commits. D’oh.

• 0.3.2 (2016-02-24)

– Improved Python 3 support.

– Fixed bug in handling ext values that have more than one equal sign.

– Configuration objects no longer need to be strictly dicts.

• 0.3.1 (2016-01-07)

– Initial bewit support (undocumented). Complete support with documentation is still forthcoming.

• 0.3.0 (2015-06-22)

– Breaking change: The seen_nonce() callback signature has changed. You must update your
callback from seen_nonce(nonce, timestamp) to seen_nonce(sender_id, nonce,
timestamp) to avoid unnecessary collisions. See Using a nonce to prevent replay attacks for details.

• 0.2.2 (2015-01-05)

– Receiver can now respond with a WWW-Authenticate header so that senders can adjust their times-
tamps. Thanks to jcwilson for the patch.

• 0.2.1 (2014-03-03)

– Fixed Python 2 bug in how unicode was converted to bytes when calculating a payload hash.

• 0.2.0 (2014-03-03)

– Added support for Python 3.3 or greater.

– Added support for Python 2.6 (this was just a test suite fix).

– Added six as dependency.

– mohawk.Sender.request_header and mohawk.Receiver.response_header are now
Unicode objects. They will never contain non-ascii characters though.

• 0.1.0 (2014-02-19)

– Implemented optional content hashing per spec but in a less error prone way

– Added complete documentation

24 Chapter 5. TODO

https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/kumar303/mohawk/issues/23
https://github.com/kumar303/mohawk/issues/32
https://github.com/hueniverse/hawk
https://github.com/kumar303/mohawk/issues/15
https://pypi.python.org/pypi/six

Mohawk Documentation, Release 0.1

• 0.0.4 (2014-02-11)

– Bug fix: response processing now re-uses sender’s nonce and timestamp per the Node Hawk lib

– No longer assume content-type: text/plain if content type is not specificed

• 0.0.3 (2014-02-07)

– Bug fix: Macs were made using URL safe base64 encoding which differs from the Node Hawk lib (it just
uses regular base64)

– exposed localtime_in_seconds on TokenExpired exception per Hawk spec

– better localtime offset and skew handling

• 0.0.2 (2014-02-06)

– Responding with a custom ext now works

– Protected app and dlg according to spec when accepting responses

• 0.0.1 (2014-02-05)

– initial release of partial implementation

5.1. Changelog 25

Mohawk Documentation, Release 0.1

26 Chapter 5. TODO

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

27

Mohawk Documentation, Release 0.1

28 Chapter 6. Indices and tables

Python Module Index

m
mohawk.exc, 16

29

Mohawk Documentation, Release 0.1

30 Python Module Index

Index

A
accept_response() (mohawk.Sender method), 15
AlreadyProcessed, 16

B
BadHeaderValue, 16

C
CredentialsLookupError, 16

E
EmptyValue (in module mohawk.base), 17

H
HawkFail, 16

I
InvalidBewit, 16
InvalidCredentials, 16

L
localtime_in_seconds (mo-

hawk.exc.TokenExpired attribute), 17

M
MacMismatch, 16
MisComputedContentHash, 16
MissingAuthorization, 16
MissingContent, 16
mohawk.exc (module), 16

R
Receiver (class in mohawk), 15
request_header (mohawk.Sender attribute), 15
Resource (class in mohawk.base), 17
respond() (mohawk.Receiver method), 16
response_header (mohawk.Receiver attribute), 16

S
Sender (class in mohawk), 14

T
TokenExpired, 17

31

	Installation
	Bugs
	Topics
	Using Mohawk
	Security Considerations
	API
	Developers
	Why Mohawk?

	Framework integration
	TODO
	Changelog

	Indices and tables
	Python Module Index
	Index

